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N O N S T A N D A R D  HULLS OF B A N A C H  SPACES 

BY 

C. W A R D  H E N S O N  * 

ABSTRACT 

The main theme of this paper is the relationship between a Banach space E and 
its nons tandard  hulls/~ (including ultrapowers of E) .  Emphasis  is placed on the 
ways in which the general structure of /~ is determined by the approximate 
shape and ar rangement  of the finite dimensional  subspaces of E. 

Introduction 

The nonstandard hulls of Banach spaces, introduced by Luxemburg [16], are 

proving to be useful in certain parts of Banach space theory. Also they arise very 

naturally at many places within nonstandard analysis. The success of any 

approach which is based on their use depends on having a good understanding of 

the relationship between a Banach space E and its nonstandard hulls /~. 

Moreover, the nonstandard hull construction for Banach spaces is just one of 
many similar constructions in nonstandard analysis. It seems likely that any 

techniques developed for understanding the relationship between E and/~ will 

also be useful in these other settings. 
Various aspects of this problem have been treated in a series of papers by the 

author and L. C. Moore, Jr. [2], [5], [6], [9], [10], [11]. Also, similar questions 

have been considered in the case where the nonstandard hull /~ is actually an 

ultrapower of E, in papers by Krivine, Dacunha-Castelle and Stern [3], [12], [13], 

[20], [21], [22], [23]. One important aspect of this program, stated in a very 

general way, has been to identify pairs of Banach space properties ~, ~ such 

that for any Banach space E and any of its nonstandard hulls /~: 

(A) E has property ~ if and only if E has property ~. 

In practice it has proved to be difficult to identify such pairs of properties or to 

decide which properties ~ or ~ could be members of such a pair. What is 
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needed is a systematic way to analyze the whole question. One fact is obvious, 

however, and it provides the starting point for such a systematic approach: if 

and ~ are as in (A), then ~ must satisfy 

(B) i[E has property ~ and E, F have isometric nonstandard hulls, then F has 
property ~ also 

for any Banach spaces E, F. 

In part it was this observation which led the author to characterize [6] those 

pairs of Banach spaces which have isometric nonstandard hulls (constructed 

using possibly different nonstandard extensions.) One consequence of the main 

result in [6] is that if/~ is any nonstandard hull of E, then there is an extension 

* ~ with respect to which E and/~ have isometric nonstandard hulls themselves. 

It follows from this that if ~ is any property which satisfies (B), then for any 

Banach space E and any of its nonstandard hulls /~ 

(C) E has property ~ if and only if U, has property ~. 

In particular, this means that satisfying (B) is a necessary and sufficient condition 

for ~ to have a companion property ~ such that the pair ~, ~ satisfies (A). 

Moreover, in that case the properties ~ and ~ are equivalent on the class of 

nonstandard hulls (although not necessarily in general.) 

A number of important Banach space properties have been shown to satisfy 

condition (C) in the papers mentioned above. For example this is true of these 

properties: super-reflexivity, B-convexity, being an Lp-space (1 -< p < o0), being 

a ~p-space (1 _-< p =< oo). A common feature of these properties is that they can be 

expressed in terms of finite dimensional subspaces. Let us say somewhat 

imprecisely that E and F are finitely equivalent if they have the same 
approximate shape and arrangement of finite dimensional subspaces. Also, say 

that a Banach space property ~ is a local property if it satisfies 

(D) irE has property ~ and irE, Fare finitely equivalent, then F has property 
also 

for any Banach spaces E, F. That is, ~ is a local property if it depends only on 

the approximate shape and arrangement of finite dimensional subspaces. 

In Section 1 of this paper a precise definition is given of an equivalence 

relation -=A between Banach spaces, which gives one way to capture the intuitive 

concept of "finite equivalence". (See Definition 1.6 and the discussion which 

precedes it.) Moreover, it is proved here that Banach spaces E, F have isometric 

nonstandard hulls if and only if E--=A F. Therefore, it follows that a Banach space 
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property ~ which satisfies (B) must be a local property, in this sense, and 

conversely. On the one hand this gives a useful criterion for telling which Banach 

space properties can occur as in (A). On the other hand, this suggests that 

nonstandard analysis provides a natural framework for studying the local 

properties of Banach spaces. (See also [23], where a similar attitude toward 

"local properties" may be found.) 

The discussion above shows that if ~ is a local property of Banach spaces, 

then (A) is satisfied with ~ equal to ~. However, in the most interesting cases 

the property ~ is not a local property, and it is the interplay between ~ and 

which is of importance. Let us say that ~ can be localized if there is a local 

property ~ such that ~, ~ satisfy (A). It is clear that ~ can be localized if and 

only if 

(E) either all nonstandard hulls of E have property ~ or none o]: them do 

for every Banach space E. When ~# satisfies (E) then we can formally define a 

local property ~ which "localizes" ~ (in the sense that ~, ~ satisfy (A)) by the 

equivalence: 

E has property ~ if and only if every nonstandard hull of E has property ~. 

This is, however, a definition of ~ which is in general likely to be difficult to 

translate into Banach space theory terms. At present we do not have a good 

general theory of properties which can be localized. To develop such a theory 

seems important. 

One useful observation [11] is that the nonstandard hulls of E all have the 

same separable subspaces, up to isometry. Therefore, any property ~ which 

depends only on separable subspaces can be localized. For example this is true 

for the property of reflexivity; here the corresponding local property is super- 

reflexivity [9]. The papers mentioned above contain many other suggestive 

examples of this type. 

In a sense then, the main underlying theme of this paper and of the study of 

nonstandard hulls in general, is to come to an understanding of local Banach 

space properties and of the process of localization, where possible. Our 

approach to the problem is to adopt a model-theoretic point of view toward 

Banach spaces. That is, we treat Banach spaces as structures for a first-order 

language L and consider them as models for the sentences in L. Beyond this, it is 

necessary to single out a special class of positive bounded formulas in L and to 

define a new relation ~A of approximate truth of such formulas in Banach spaces. 

Section 1 of this paper is devoted to the initial development of this point of 
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view, showing how it is relevant to the study of nonstandard hulls. Somewhat 

surprisingly, this model theory for Banach spaces seems to develop in close 

parallel to general model theory itself; we plan to pursue this further in a 

somewhat broader setting in [7]. This is unexpected since the class of Banach 

spaces is not characterized by any first-order properties; moreover, the class of 

positive bounded logical formulas which we consider is not closed under 

negation. Nonetheless, it seems that essentially every aspect of general model 

theory has a significant parallel in this setting. The aspect of this theory which is 

developed here may be viewed as parallel to the use of highly saturated models 

in general model theory. 

In Sections 2 and 3 we give detailed consideration to the nonstandard hulls of 

the Lp-spaces (1 -< p < ~) and the C(X) spaces. A complete classification under 

finite equivalence is given for the Lp-spaces and the structure of their nonstan- 

dard hulls is determined in a more or less complete way. A similar analysis is 

given for the C(X) spaces, where X is totally disconnected. It is also shown that 

any two infinite dimensional Lp-spaces or C(X) spaces have isomorphic 

nonstandard hulls. (These are related to some interesting results of Stern [23] for 

L~-spaces and C(X) spaces. We are grateful to Stern for making available 

preprint copies of this and other work.) 

Preliminaries 

The basic framework of nonstandard analysis is developed in [16], [17] and 

[18] and we assume familiarity with these details. (See also [24], which gives a 

comprehensive and up-to-date account of the subject.) Throughout this paper 

we take At to be a set-theoretical structure, as in one of these presentations, 

which contains the set C of complex numbers, and also the sets R and N of real 

numbers and natural numbers, respectively. We denote by *At an appropriate 

nonstandard extension of At; thus *At satisfies the Transfer Principle, which 

simply asserts that *At is an elementary extension of At in a suitable sense. Also 

*At satisfies the non-triviality assumption, that *N ~ N (or, equivalently, that *R 

contains non-zero infinitesimal numbers). 

In addition, we assume throughout this paper that *At is an Nl-saturated 

extension of At [16]. This condition can be expressed in either of the following, 

equivalent ways: 

(i) If {A, I n E N} is a collection of internal sets with the finite intersection 

property, then A {A, I n E N} ~ 0 .  

(ii) If A is an internal set, then any function from N into A is the restriction of 

an internal function from *N into A. 
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The nonstandard hull construction in its most general form applies to objects 

in *At which are internal Banach spaces. These are internal vector spaces S, 

equipped with an internal function p from S into the nonstandard scalar field, 

such that the usual Banach space axioms are satisfied, as interpreted in the 

context of *At. Put another way, (S, p) is an internal Banach space if there is a set 

of Banach spaces in At such that (S, p) is an element of *~3. 

Given an internal Banach space (S, p), we say p E S is finite if p(p) is a finite 

scalar; p is infinitesimal if p(p) is infinitesimal. Denote  the vector space of finite 

elements of S by fin(S). Then.def ine  S to be the quotient space of f in(S) 

obtained by identifyir]g the infinitesimals to 0; let 7r: fin (S)---~ S be the quotient 

map. Then a norm t~ is defined on S by setting t~(x) equal to the standard part of 

p(p), where x = zr(p). Then (S, t~) is a standard Banach space over the standard 

field of scalars, R or C. The key role of the I,l~-saturation assumption is to insure 

that (S, t~) is complete [16]. A space (S, t~) constructed in this way will be called a 

nonstandard hull. 
If (E, p) is a Banach space in At, then (*E, *p) is an internal Banach space in 

*At. The nonstandard hull constructed as above from (*E, *p) is usually denoted 

by (/~, t~). It contains E as a canonical subspace and is called a nonstandard hull 
of E. 

An important class of nonstandard hulls is the class of Banach space 

ultraproducts introduced in [3] and studied extensively by Krivine, Dacunha- 

Castelle and Stern. (See [12, 13] and [20-23].) As we explain below, these are the 

nonstandard hulls constructed using an extension *At which is obtained from an 

ultrapower of At (see [16]). Just as in model theory generally, there are some 

advantages to be gained by dealing with an explicitly constructed object, such as 

an ultraproduct, rather than simply using highly saturated models whose 

existence is guaranteed by the Compactness Theorem or some analogous 

general result. However,  even when dealing with ultraproducts of Banach 

spaces, the flexible framework of nonstandard analysis is useful, especially as it 

provides a convenient language for the higher type levels. In any case, there is a 

close connection between nonstandard analysis and the approach of Krivine, 

Dacunha-Castelle and Stern. 

Recall that the Banach space ultraproduct construction is as follows [3]: Let 

{E, I i E I} be a family of Banach spaces and let ~ be an to-incomplete ultrafilter 

on I. Consider functions a defined on I such that for each i E I the value a (i) 

lies in G and such that there is a uniform bound on the norms of the elements 

{a ( i ) l i  E l} .  Two such functions a~,a~ are equivalent if the ~ of the 

norms of {oh(i)-ot2(i)l  i E I} is 0. The Banach space ultraproduct E is the 
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vector space of all equivalence classes [a]  of such functions a. The norm of [a]  is 

defined to be the ~ of the norms of { a ( i ) l i E  I}. To see that this is a 

nonstandard hull, let At be any structure which contains the family {Ei [i E I} 

and let *At be the extension of At constructed using the ultrafilter 0//. (See [16].) 

Then *At is an Nl-saturated extension of At. Moreover,  there exists p E *I such 

that p E *J for every set J in 0//. We consider the internal Banach space *Ep. By 

the construction of *At, we know that *Ep corresponds exactly to the usual 

ultraproduct ~ (Ei[i  E I). It is routine to show that the equivalence 

classes [a] in E correspond exactly to the elements of the nonstandard hull 

constructed from *Ep. In particular, they are isometric as Banach spaces. 

For simplicity we consider explicitly only Banach spaces over R. All of our 

results are valid for complex spaces also, and it is routine to extend the 

arguments. We use standard Banach space terminology and notation, as used in 

the recent book [14] for example. 

I. Positive bounded formulas 

The most useful approach to the problem of analyzing the relationship 

between a Banach space and its nonstandard hulls is to regard Banach spaces as 

structures for certain first-order languages and to study their model-theoretical 

properties. This was done in [5] in order to obtain certain isometries between 

specific nonstandard hulls, and also in [6] in order to give a characterization of 

those pairs of Banach spaces which have isometric nonstandard hulls. This point 

of view will be continued here in order to give a more systematic account of the 

relation between a Banach space and its nonstandard hulls. 

Let L be the first-order language whose nonlogical symbols are: a binary 

function symbol + ,  two unary predicate symbols P and Q and for each rational 

number r a unary function symbol jr. We regard each Banach space E (with 

norm p) as an L-structure by taking + E to be the vector addition on E, by 

setting 

PF = {xlp(x)<= 1} 

QE = {x [ p ( x ) ~  1} 

and by taking (f,)E to be the operation of scalar multiplication by r, for each 

rational number r. 

If t is a term of L and r is a rational number, then we will often write r �9 t or rt 

in place of fi(t). Similarly if ~ is the interpretation of f, in some L-structure,  we 
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will use ra in place of ~ (a).  Usually we will refer to the interpretat ion of + in an 

L-s t ruc ture  simply as + ,  and wil! write a + b for  + (a, b). 

Let  T be the theory  of all non-trivial Banach spaces, considered as L -  

structures. It is clear that  for any term t in L with variables xz,. � 9  x, we can 

effectively find rational numbers  r l , " ' ,  r, so that 

F-r t=(r lxz  + �9 �9 �9 + rnx~). 

(Here we should take the term r lx l  + �9 �9 �9 + rnxn to be g rouped  in some fixed way. 

Relat ive to T the particular grouping does not matter .)  

Suppose E is a Banach space with norm p and t is a term rlxl + �9 �9 �9 + r, xn in 

L. If al, �9 �9 ", an are e lements  of  E, then the interpretat ion of the a tomic formulas  

P ( t )  and Q ( t )  in E is evidently given by 

E ~ P ( t ) [ a l , . . . ,  an] r p (~ , r , a , )<-1  

E ~ Q ( t ) [ a l , . . . , a n ]  r  p(Er~a,)>= 1. 

Also if r is any positive rat ional  number ,  then the norm inequalities 

p(Er~a, )  <- _ r and p(Er~a,)~ r 

can be expressed using P ( 1 / r  �9 t )  and Q ( 1 / r  �9 t )  respectively. A n  atomic formula  

t = s simply expresses a specific linear dependency  among  the named  elements.  

Note  that in T it is equivalent  to an atomic formula  t ' =  0. 

A n  arbitrary quantifier-free formula  tr can be written as a disjunction 

o'1 v or2 v ' . .  v o-R, where each trj is a conjunct ion of a tomic formulas  or  their 

negations.  In this paper  we will be concerned  mainly with positive formulas;  in 

that case each trj is just a conjunct ion of a tomic formulas.  Thus  each trj in or 

expresses a finite number  of  norm estimates of the forms 

p (Er, a, ) <-_ r 

p (Es, a,) => s 

together  with a finite number  of linear equalities of the form 

Et~al = O. 

(And  in each, only specific rational coefficients occur.)  Certain special classes of  

formulas  in L will be of  impor tance  here.  Recall  that  a formula  is pos i t i ve  if it 

can be built up f rom atomic formulas  using only conjunct ion,  disjunction and 

universal or  existential quantifiers. A formula  is pos i t i ve  b o u n d e d  if it can be 
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built up from atomic formulas using conjunction, disjunction and the b o u n d e d  

quantifiers 

( 3 x ) ( P x  A " ' '  ) 

(Vx) (Px  ~ . . .  ). 

The results in [6] are given in terms of positive formulas of L, while here we 

will make use of positive bounded formulas. Informally the difference is simply 

that bounded quantifiers are restricted to range over the closed unit ball, while 

unbounded quantifiers range over the entire space. Since a description of the 

entire space can be easily obtained from its restriction to the unit ball, it is not 

immediately obvious what change in expressive power is entailed by using the 

bounded quantifiers. We will show below that each positive formula is equival- 

ent in T to a positive bounded formula, when the free variables are restricted to 

range over the closed unit ball. Thus positive bounded formulas are, if anything, 

more expressive than positive formulas. Our other reasons for using positive 

bounded formulas are twofold. First, we are able to give a very detailed analysis 

of the truth of positive bounded formulas in nonstandard hulls, an analysis which 

does not seem to be directly available for positive formulas. Second, our 

treatment of positive bounded formulas extends directly to situations where 

Banach spaces with operators, orderings, etc. are considered. In those contexts 

the restriction to use bounded quantifiers seems to be essential. 

The language L is actually an expansion of the language used in [6]; for 

technical convenience we have included in L symbols for scalar multiplications 

by rational numbers. Let Lo be the language, contained in L, whose nonlogical 

symbols are + ,  P and Q ; let To be the restriction of T to Lo. Evidently To is 

equal to the theory of nontrivial Banach spaces considered as Lo-structures. In 

[6] the language and theory used were just Lo and To. 

As was observed in [6], if M is a model of To then there is a unique way to 

regard ( l~ t t ,  + )  as a vector space over the rational numbers. Moreover,  the 

scalar multiplication operations are first-order definable in M in a way which 

does not depend on M. It follows by an easy argument that T is an extension by 

definitions of To (see [19, section 4.6]). That is, the theory obtained from To by 

adding the axioms giving first-order definitions for the operations [, is exactly the 

theory T. 

We are justified then in regarding the theories T and To as being the same. For 

example, if o" is any formula of L then there is an effectively found formula ~o in 

Lo such that 

Fro" ~ Oro. 
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Moreove r ,  each mode l  of  To has a unique expans ion  which is a mode l  of 7". 

Now let M be an arbi t rary  model  of T, so I MI  is a vec tor  space over  the 

rat ional  number s  under  the addit ion + ~ and the scalar mult ipl icat ion opera t ions  

(fr)~. Recall  that  we will wri te the values of these opera t ions  as a + b and ra, 

respect ively.  As  in [6], an e l emen t  a of I MI  is said to be f inite if there  is an 

in teger  n > 0 such that  ( 1 / n ) a  E P~. The  set of finite e l ements  of I s  g] is the 

domain  of a subst ructure  of s4 which will be deno ted  by fin (M). 

LEMMA 1.1. I f  5g is a m o d e l  o f  T, then fin (~/) is an  e lementary  substructure 

ofsg. 

PROOF. This follows f rom [6, l e m m a  1] and the fact that  T is an extension by 

defini t ions of To. 

THEOREM 1.2. For each positive formula  tr with free variables xl, " �9 ", x., there 

is a posit ive b o u n d e d  fo rmu la  ~" with the s a m e  free variables such that  

~-~PX, A ' ' "  A Px.  ~ (~r ~ ,  r) .  

PROOF. We  may  assume that  o" is in prenex  form. We  argue  by induction on 

the n u m b e r  of quantif iers  in o'. The  result is obvious  for  quant i f ier-free formulas .  

W e  will give details only for  the par t  of the induction step involving existential  

quantifiers.  Universa l  quantif iers  are t rea ted  similarly. 

Now assume that  o" is (::Ix)o'1 and that  the result holds for  all posi t ive formulas  

with fewer  quantif iers  than tr. For  each integer  m > 1 let o',, be the result of 

replacing all free occurrences  of x in o-~ by the t e rm m �9 x. By the induction 

assumpt ion ,  for  each m > 1 there  is a posit ive bounded  formula  r,, with free 

var iables  x, xl, �9 �9 �9 x. such that  

FTPx A P x ,  A ' ' "  APx.---~(tr, ,  ~--~'r,,). 

Let  z "  be  the result of replacing each free occur rence  of x in r,~ by ( 1 / m ) x .  Then  

[-TP(--~ x )  A Px1A " " " A Px ,  "--~ (O'14-'~ Z ',,) 

for  each m => 1. No te  that  this implies that  if 1 _-< k =< m, then 

Let  a,, be  the formula  

Px ~ A �9 �9 �9 A Px.  

A P x ,  A ' ' "  A PX,, ~ ('," ~ "--,' ' r ' ) .  
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It will suffice to show that am is a theorem of T for some m _-> 1, since 

is equivalent  in T to a positive bounde d  formula.  We note  that if 1 _-< k _-_N m, then 

F~TOLk ~ Ol m. 

Therefore ,  if no  am is provable  in T there is a model  ~ of T and al, �9 �9 �9 a .  E 

I .~]  so that 

~ - - - n a , , [ a , , . . . , a , ]  

for every m _-> 1. It follows that al, �9 �9 -, a,  are in P~. Moreover ,  there must exist 

b E I~4[ such that 

sg~o'l[b,a~,. .  ",a.] 

since 

Fr(3x)  ( p ( l x )  A T')--~(3X)~rl 

for all m > 1. By L e m m a  1.1 we may assume that b is finite in M, so there exists 

m > 1 with (1/m)b E P~. But this implies 

and hence  

~/~ am[a~,...,a.] 

which is a contradict ion.  

COROLLARY 1.3. For each positive sentence or there is a positive bounded 
sentence �9 such that FT~" ~-~ ~. 

Al though  the proof  given here does not show it, the formula  z in T h e o r e m  1.2 

can be found  effectively f rom o'. This can be shown by giving a recursively 

axiomatized theory  T' conta ined in T for which the a rgument  above  is still valid. 

(We will not  describe T '  here,  but it is not hard to extract the needed  axioms 

f rom the discussion above  and the proof  of [6, l emma 1].) It would be more  

satisfactory to have an explicit way of construct ing z f rom o', as we do not now 

have. 
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It should also be noted that where Banach spaces with extra relations and 

operations are considered, the analogues of Lemma 1.1 and Theorem 1.2 may 

fail. In those contexts one must restrict attention to positive bounded formulas 

from the start. With some mild conditions on the extra relations and operations, 

the entire theory we develop here will carry through, as will be shown in [7]. 

Now let tr be an arbitrary positive bounded formula of L. We wish to 

construct a sequence of other positive bounded formulas tr2 (for m => 1) which 

"approximate"  tr in a certain sense. Having fixed an integer m >- 1, we obtain 

tr+., from tr by making the following replacements for those atomic formulas 

which are not part of a bounded quantifier: 

(i) replace t =  s by e ( m . ( t - s ) ) ;  

(ii) replace P(t)  by P((1- ( I /m) ) .  t); 

(iii) replace Q ( t ) b y  Q ( ( I +  ( l /m) ) .  t). 

That is, when ~r is an atomic formula we define ~+~ using (i), (ii) or (iii). For more 

complex formulas we use the identities 

(o- A ~-)+., = ~+~AT+~ 

(o" v ~')+., = o'+.. v ~'~ 

(ax)  (Px A or)+.. = (ax ) (Px  A or+~) 

(Vx) (Px ~ t r ) ;  = (Vx) (Px ~ tr2) 

and proceed inductively. 

In each of the cases (i), (ii), (iii) above, the given atomic formula is replaced by 

an atomic formula which is provably weaker in T. It follows that ~ ~ ~rZ is a 

theorem of T for each m _>- 1. Also, for similar reasons 

t-TCr~+,~ o'2 

holds for each m. (Here it is essential that only ^, v and quantifiers are used in 

building up formulas.) Informally we think of the formulas or+,, as representing 

approximations to tr, with the degree of accuracy in the approximation improv- 

ing as m increases. We are led to introduce a relation ~,, of "approximate 

t ruth" as follows. 

DEFINITION 1.3. Let tr be a positive bounded [ormula of L with n free variables. 

For each L-structure gl and each a,, .  �9  a, E I sil [ we say 

~4~=Ao- [a , . . . , a . ]  if and only if M~tr+..[a, . .  . , a . ]  

for every m >- 1. 
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LEMMA 1.4. Let  o" be any positive bounded formula in L with n free variables. 

(i) For each m >-_ 1 

~-rcr---~ tr~ and ~-To'+,,+l---~ o'L 

(ii) Let ~ be any model  o f  T. For each m >--_ 1 and al, " . ", a, E I ~ 1 ,  

~ t r [a l , . .  . ,  a,] implies ~ Atr[a~, . .  . , a , ] .  

PROOF. Part  (i) was r e m a r k e d  above;  Part  (ii) is an immed ia t e  consequence  

of (i) and the definition of ~A. 

It seems useful to include here  a few informal  r emarks  on the in te rpre ta t ion  of 

~A in a Banach  space E with norm p. First suppose  o- is an a tomic  fo rmula  P(t) .  

As discussed above  we may  consider  t to be of the fo rm Erlxl with r ~ , - ' . , r ,  

rat ional  numbers .  In that  case, o-L cor responds  to the es t imate:  

1 
p(Y.r,x,) < - 1 + (m - 1-----~) " 

Similarly, if tr is Q ( t )  then o-~ cor responds  to p(Zr~x~) >= 1 - 1/(m + 1). If o" is 

t = 0 then tr~ cor responds  to 

1 
p (Er, x,) <-_ - - .  

m 

In each case, when tr is a tomic,  the formula  o'~ expresses  a condit ion which is a 

genuine  approx ima t ion  of the condit ion expressed  by o-. More  general ly  this is 

t rue for all positive, quant i f ier-free formulas .  

LEMMA 1.5. Let  tr be a positive, quantifier-free formula in L with n variables. 

For each Banach  space E and each a ~ , . . . ,  a, E E 

E ~aO'(a~, '"  ", a,] r E ~ o ' [ a ~ , ' . ' ,  a,]. 

PROOF. The  discussion above  makes  it clear  that  this is t rue when tr is an 

a tomic  formula .  It is equally obvious  that  the class of formulas  o" for  which this 

equiva lence  holds is closed under  A and v, which comple tes  the proof .  

In general ,  each posit ive bounded  formula  o- is logically equivalent  to one  of 

the fo rm 

O , x ,  " " O . x . r  

where  Q~,- �9 -, Q,  r epresen t  bounded  quantif iers  and ~- is a posit ive,  quantif ier-  

free formula .  By L e m m a  1.5 and the discussion preceding  it, each ~-+,, expresses  

an app rox ima te  version of the sys tem of no rm es t imates  and equali t ies expressed  

by r. Moreove r ,  if ~r is any L-s t ruc tu re  and a~, �9 �9  ak ~ l ~r I then by definition: 



120 C.w.  HENSON Israel J. Math. 

~4~  A Q l x l  " " " Q~xnz [al, " " , ak ] 

if and only if for each m => 1 

$ 1 ~  Q,x~ " " Q , x n ( z = ) [ a l ,  " " " , a~ ]. 

This discussion shows that the properties expressible in terms of ~,~ and positive 

bounded formulas are those which concern the approximate  shape and arrange- 

ment of finite sets of elements. In each single expression there is a finite upper  

limit on the number  of elements discussed (the number  of variables in the 

formula) and only finitely many norm estimates are allowed. This suggests the 

following definition. 

DEFINITION 1.6. L e t  ~ ,  ~ be L-s t ruc tures .  W e  say  5g a n d  ~ are f in i te ly  

equ i va l en t  a n d  write ~4=--A ~ if, for  each  posi t ive  bounded  sen tence  or 

The phrase "finitely equivalent" is chosen to suggest the relation of f in i te  

representabi l i ty  which is of importance in Banach space theory. Recall that F is 

finitely representable in E if for each finite dimensional subspace F0 of F and 

each e > 0  there is a finite dimensional subspace E0 of E and a linear 

isomorphism T of Fo onto Eo such that T and T - '  have norm _-< 1 + e. That is, 

the finite dimensional subspaces of F can be embedded into E "almost  

isometrically". The following theorem, whose proof we omit, gives the connec- 

tion between this concept and ~A. (See also [11, theor. 2.3].) 

We say that a positive bounded formula is exis ten t ia l  if it consists of a prenex 

of existential bounded quantifiers followed by a quantifier-free positive formula. 

THEOREM 1.7. L e t  F a n d  E be B a n a c h  spaces.  T h e n  F is f in i te ly  represented in 

E i f  a n d  only  i f  for  every  existent ial ,  posi t ive  bounded  sen tence  tr 

F ~ A Or impl ies  E ~ Atr. 

We now turn to the meaning of ~A in nonstandard hulls. Suppose that At is 

fixed and that *At is some Nl-saturated extension of At. Let S be any internal 

Banach space in *At, with internal norm p: S--* *R. Just as done for Banach 

spaces themselves, we regard S as an L-structure: + s is the given internal 

addition on S, 

P s = { p I p E S  and p(p)_-<l} 

Q s = { p l p @ S  and p(p)_->l} 
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and for  each s tandard  rat ional  n u m b e r  r, (fr)s is the given internal  opera t ion  of 

scalar mult ipl icat ion by r on S. Note  that  the Trans fe r  Principle insures that  S is 

a mode l  of T. H e n c e  the subs t ruc ture  of finite e lements  of S, f in (S)  is an 

e l emen ta ry  subs t ruc ture  of S. Recall  that  rr denotes  the canonical  quot ient  

h o m o m o r p h i s m  of fin (S) on to  S. 

LEMMA 1.8. Let  S be an internal B a n a c h  space in * M and let pl, . . . , p,  ~ S be 

finite. Le t  tr be any  positive bounded formula  in L with n free variables. 

(i) S ~ o-[p~, �9 �9 �9 p, ] implies S ~ or [ 7r (p 1 ) , " ' ,  rr (p,)]. 

(ii) For each m >= 1 

~ 0"2+1 [Tr(pi),- �9 �9 7r(p,)] implies S ~ ~ + [ p l , ' " ,  p,] .  

PROOF. 

(i) The  mapp ing  ~" is a h o m o m o r p h i s m  of fin (S) on to  S as L-s t ruc tures ;  

moreove r ,  ~" maps  Ps onto  P~. The  general  fact that  truth of posi t ive formulas  is 

p rese rved  under  h o m o m o r p h i s m s  shows that  

fin ( S ) ~  , ~ [ p , . . . ,  p , ]  implies S ~ o '[~-(p0,  �9 �9 �9 ~'(p.)] .  

But  Ps = P~, r so that  the truth of any formula  whose  quantif iers  are relat ivized 

to P is the same  in f in (S)  as in S. This  p roves  (i). 

(ii) Let  p be  the internal  no rm on S. It is clear f rom the definition of ~ on 

that  if 0 < r < s are rat ional  number s  and p ~ S is finite, then 

and 

fi(Trp)_- < r implies p ( p ) <  s 

/~(~ 'p)~  s implies p ( p ) >  r. 

F r o m  this and the fact that  ~- is a h o m o m o r p h i s m  it is immed ia t e  that  (ii) holds 

when o- is an a tomic  formula .  A s t ra ight forward  induct ive a rgumen t  shows that  

(ii) holds in general .  

THEOREM 1.9. Let  S be an internal B a n a c h  space in *eft and let pl, �9 �9 �9 p,  be 

finite. For each positive bounded formula  o- in L with n free variables, the fol lowing 

conditions are equivalent:  

(i) S ~ t r [ ~ ( p ~ ) , . . . , ~ - ( p , ) ] ;  

(ii) S ~Ao'[~'(pl),.-., ~'(p,)]; 
(iii) S ~ A t r [ p ~ , . . . , p , ] .  

PROOF. The  equiva lence  be tween  (ii) and (iii) follows directly f rom L e m m a  

1.8. Also,  L e m m a  1.4 (ii) shows that  (i) implies (ii). Thus  it remains  only to show 
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(iii) implies (i); we do this by induction on the logical complexity of o-. We note 

first that if p E S is finite, then 

p(p)<= m/(m - 1) for all m implies t~(~-(p)) = < 1 

and 

and 

p(p)>= m/(m + 1) for all m implies ~(zr (p) )=  > 1 

p(p)<=l/m for all m implies 7 r (p )=0 .  

This shows that (iii) implies (i) for all atomic formulas o'. The induction steps 

concerning disjunction, conjunction and universal bounded quantifiers are 

trivial. It remains to consider o" of the form (3x ) (Px  A z) where the stated result 

holds for r. Condition (iii) for ~ asserts that for each m => 1 

S ~ (3x) (Px  A z+,,,)[p~, ' ' '  ,p ,] .  

Consider for each m => 1 the internal set 

A,, = {p E S I S ~ r ~ [ p , p ~ , . . . , p , ]  and p(p)<- 1}. 

By assumption each A,, is nonempty and by Lemma 1.4(i) 

A I ~ A z ~ A 3 ~  . . . .  

Since * ~  is assumed to be N~-saturated, it follows that there exists p E S 

satisfying p(p) =< 1 and 

S ~ ' ~ [ p ,  p l , . . .  ,p,,] 

for all m => 1. The induction assumption yields 

$ ~ r [~'p, rrpl, �9 �9 �9 7rpn ] 

and hence 

~ ~r [ r p ,  �9 �9  7rp,]. 

This completes the proof. 

Evidently Theorem 1.9 gives a complete characterization of truth in the 

nonstandard hull S in terms of truth in the internal object S, for positive 

bounded formulas. Moreover, it illustrates how central the approximate truth 

relation ~A is in studying nonstandard hulls. In particular, in any nonstandard 

hull, the relations ~ and ~A coincide, for positive bounded formulas. 
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COROLLARY 1.10. Let E be a Banach space and E one of the nonstandard 

hulls of E. For each positive bounded formula (r with n free variables and each 

a ~ , ' . . ,  a~ E E, the following conditions are equivalent: 

(i) /~ ~ o ' [ a . "  �9 ", a . ] ;  

(ii) /~ I=Ao-[al, �9 �9 �9 an]; 

(iii) E ~= aO' [a l , ' ' ' ,  a,,]. 

PROOF. We apply T h e o r e m  1.9, where S is *E. This shows that (i) and (ii) are 

equivalent  and that they are equivalent  to: 

*E DAo-[*a l , . .  " ,*an].  

The  Transfer  Principle implies that this is equivalent  to (iii). 

COROLLARY 1.11. Each Banach space is finitely equivalent to each of its 

nonstandard hulls. 

COROLLARY 1.12. Let E be a Banach space and al," " ' ,  a, E E. For each 

positive bounded formula ~r with n free variables 

E ~Ao'[a l ,  �9 � 9  an] r E ~Ao'~[a~, �9 � 9  an} for every m >-_ 1. 

PROOF. Let  /~ be any nonstandard  hull of E. By Corol lary 1.10, the 

s ta tement  to be proved is equivalent  to 

/ ~ A o - [ a ~ , .  " ' , a n ]  r162 ~ o ' ~ [ a ~ , . . . ,  a , ]  for  all m _->1. 

But this is t rue by definition. 

THEOREM 1.13. For each pair E, F of Banach spaces, the following conditions 

are equivalent: 

(i) E--=A F; 
(ii) There is a Banach space H such that each positive bounded sentence true in 

E or in F is true in H;  

(iii) E and F have isometric nonstandard hulls; 

(iv) E and F have isometric Banach space ultrapowers. 

PROOF. It was shown in [6] that (iii) and (iv) are equivalent .  Also it was 

shown there  that (iii) and (iv) are equivalent  to a condit ion which, by T h e o r e m  

1.2, is weaker  than (ii). To  prove (i) implies (ii) we need only take H to be a 

nons tandard  hull of E. If o" is a positive bounded  sentence and o" is t rue in E or 

in F, then E~=ao  ". Hence  by Corollary 1.10 it follows that H ~ o ' ,  as desired. 
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Finally, that (iii) implies (i) follows from Corollary 1.11 and the fact that 

isometric spaces are finitely equivalent. 

COROLLARY 1.14. Let E be a Banach space and K an infinite cardinal number. 

For each set S C E of cardinality <- K there is a closed subspace F of E such that 

S C F, F has density character <-_ K and F=-AE. 

PROOF. Using the Downward L6wenheim-Skolem Theorem [19], obtain an 

elementary substructure ~4 of E which contains S and has cardinality =< K. Let F 

be the closure of sg in E. Evidentally S C F and F has a dense subset of 

cardinality -<_ K. 

Choose At to contain E and let *At be an extension of At which has the 

N0-isomorphism property. It is shown in [5] that, under these hypotheses, the 

nonstandard hulls of F and E are isometric. Therefore,  F=-AE by Theorem 

1.13. 

Actually, in some situations it is useful to know that certain specific nonstan- 

dard hulls are isometric. For this it is convenient to assume that *At has one of 

the isomorphism properties introduced in [5]. 

THEOREM 1.15. Let *At be an extension of At which has the No-isomorphism 

property. I f  S~, $2 are internal Banach spaces in *At and $1 =-,~ $2, then S~ and $2 

are isometric. 

In particular, if E, F are finitely equivalent Banach spaces in At and E, if" are the 

nonstandard hulls constructed using *dr, then F. is isometric to F. 

PROOF. Let S~, $2 be internal Banach spaces in *At and suppose S~---A $2. By 

Theorem 1.9 we know that a positive bounded sentence is true in S~ if and only if 

it is true in $2. By Theorem 1.2 this is true also of positive sentences of L. As 

shown in the proof of [6, theor. 2] there is a Banach space E in At such that 

exactly the same sentences are true in S~ as in E. 

Now let tr be a positive sentence of L which is true in S, or in $2. By Theorem 

1.2 and Theorem 1.9, o" is true in $1 or $2; therefore o" is true in E. By the 

Transfer Principle o" is true in *E. In [6] it was shown that in this situation, when 

*At has the i~10-isomorphism property, there are homomorphisms onto *E from 

S~ and from $2, and these homomorphisms induce isometries between S~, $2 and 

/~. (See for example the proof of [6, prop. 2].) This proves the first part of this 

theorem. The second part follows immediately, using Corollary 1.11 to see that if 

E ~AF, then /~---Al6. 

One apparent disadvantage of working with the set of positive bounded 

formulas is that it is not closed under negation. For example, there exist Banach 
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spaces E and F such that every positive bounded sentence true in E is true in F, 

but not conversely. That is, the set of positive bounded sentences true in given 

space need not be maximal in the way that such a "logical theory"  should be. 

The next result shows that this is not a problem when we consider ~.~ in place of 

COROLLARY 1.16 I f  E and F are Banach spaces such that for any positive 

bounded sentence 

E ~ o" implies F ~ Atr, 

then E and F are finitely equivalent. 

PROOF. Suppose o" is a positive bounded sentence and E ~ tr. Then for each 

m => 1, E ~ ,z2  and hence F~Ao-~ by assumption. By Corollary 1.12 we see that 

F~Ao' .  

Now let/~, _F he any nonstandard hulls of E, F respectively. By Corollary 1.10, 

any positive hounded sentence true in /~ is true in F. Therefore  /~ and _~ are 

finitely equivalent, by Theorem 1.9. In turn this implies that E and F are finitely 

equivalent, by Corollary 1.11. 

Now let {E~[i E I} be an indexed family of Banach spaces and 0// an 

to-incomplete ultrafilter on I;  let E be the Banach space ultraproduct of the 

family {E~ [i ~ I}, constructed using 0-//. As explained above, if S denotes the 

ordinary ultraproduct of this family, as L-structures, then S may be regarded as 

an internal Banach space (relative to an appropriate At and *At) and E is then 

simply the nonstandard hull S. Thus we may use Theorem 1.9 to analyze the 

truth of positive bounded formulas in E. 

Recall that elements in E may be regarded as equivalence classes of functions 

ot defined on I such that a ( i ) E  15, for all i E I and such that there is a uniform 

bound on the norms of the elements a(i) .  Let [a] denote the equivalence class 

of such an a, as an element of E. Let a/all denote the equivalence class of a as 

an element of the ordinary ultraproduct S. 

THEOREM 1.17. Let E be the Banach space ultraproduct of the family {E, I i E 

I} of Banach spaces, relative to the to-incomplete ultrafilter ~ on I. For each 

positive bounded formula in L with n free variables and each [oil],. �9  [a,]  in E, 

the following are equivalent: 

(i) E ~o" [ [ a l ] , " ' , [ a ~ ] ] ;  

(ii) E ~ A o [ [ a l ] , ' ' ' , [ a n ] ] ;  

(iii) for each m >-_ 1 
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{iIE, ~ o'+~[a,(i), . . .  , a.(i)]} E q/. 

PROOF. The discussion above and Theorem 1.9 show that (i) and (ii) are 

equivalent to each other and to the condition: for each m -> 1 

S ~ ~r+,.[a,/~, " " " , ~ . / ~ ] ,  

where S is the ordinary ultraproduct of {E~ l i E I}. This condition is equivalent 

to (iii) by the fundamental property of ultraproducts. 

COROLLARY 1.18. (Compactness Theorem). Let E be a set of positive bounded 

sentences such that for each m >= 1 and each finite subset ~,o of E, there is a 

Banach space Eo such that 

Eo~tr+~ for all trE~,o. 

Then there are Banach spaces (of arbitrarily large cardinality) such that 

E ~ tr for all o" ~ ~. 

PROOF. Let I be the set of all pairs (Eo, m) where ~o is a finite subset of E and 

m -> 1. For each (Eo, m) = i in I let E~ be a Banach space chosen so that Ei I=tr~ 

for all tr ~ Eo. There is an ultrafilter q/ on I which contains each of the sets 

{ (~ ,  m')[ ~o C_ ~ and m -< m '} 

where (~0, m) is a fixed element of I. Let E be the Banach space ultraproduct of 

{Ei I i ~ I} constructed using r Theorem 1.17 implies that E ~ cr for all cr E ~. 

By Corollary 1.10, the nonstandard hulls of E provide arbitrarily large spaces 

with the desired property. 

As noted in the preliminaries, the construction of Banach space ultraproducts 

is included in a more general construction. Namely, take an indexed family 

{E~ [i ~ I} of Banach spaces, choose p ~ *I and take E to be the nonstandard 

hull of the internal Banach space *E r It is an easy matter to prove the analogue 

of Theorem 1.17 for this construction. Having done so, it follows that E is 

finitely equivalent to the Banach space ultraproduct of the family {E, li E I} 

constructed using the ultrafilter q / o n  I which is determined by p. (That is, A C_ I 

is in q/iff  p E *A.) For this and other reasons we have used ultraproducts here in 

place of the more general construction. 

DEFINITION 1.19. Let ~ be a class of Banach spaces. 

(i) c~ is a local class if whenever E is in qg and F is finitely equivalent to E, then 
F is in cr 
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(ii) cr is compact if [or each set ~Z o[ positive bounded sentences the following 

holds : if for each m >= 1 and each finite subset ~o of ~ there is Eo E ~g so that 

Eo~+. .  for all o'EY~o 

then there exists E E ~ such that 

E ~A O" for all cr ~ E. 

According to Definition 1.19, a class or property of Banach spaces is local if it 

depends only on the approximate  shape and arrangement  of the finite dimen- 

sional subspaces, to the extent that is expressible using positive bounded sentences. 

One may view this definition as being somewhat restrictive, in that for each 

particular first-order formula there is a specific upper  bound on the number  of 

elements mentioned (equivalently, on the dimension of subspaces considered). 

Thus, according to this definition, the following condition does not seem to 

define a local class: 

For each xl, x2 in E, of norm -< 1, there exists a finite set of elements 

x 3 , " . , x , ,  also of norm _-< 1, such that for some choice of signs 

Jl ++-x' +--x: +-x3 +- ' '"  + x .  l l > 2  

If a specific n is chosen, then this condition can be expressed in the form 

(Vx, Vx2 3x3. �9 �9 :Ix, o-)~. 

If not, then there does not seem to be a way to express this condition in terms of 

any set of positive bounded sentences. 

This simply points out that there are perhaps many ways to make precise the 

concept of local class or property of Banach spaces. The one discussed here is the 

most appropriate  in connection with nonstandard hulls and Banach space 

ultraproducts. We hope to return to this point in the future. In particular, if ~ is 

a class of Banach spaces which is closed under Banach space ultraproducts (more 

generally, if ~ is compact),  then it seems that cr must be local in the sense of 

Definition 1.19 if it is local in any reasonable sense. In particular, the distinctions 

discussed above do not matter  when ~ is compact.  

We note that a local class of Banach spaces is closed under isometry. 

Moreover,  the results above show that cr is a local class if and only if it is closed 

under isometry and satisfies the condition: 

E is in c~ <=>/~ is in c~ 
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for each Banch space E and each nonstandard hull/~ of E. (It is equivalent here 

to restrict /~ to range over the ultrapowers of E, since we know that finitely 

equivalent Banach spaces have isometric ultrapowers, by Theorem 1.13.) Also, 

Theorem 1.17 (and the proof of Corollary 1.18) show that any class which is 

closed under Banach space ultraproducts is a compact class. 

The result which follows gives a characterization of compact, local classes in 

more algebraic terms and also as the analogue in this setting of elementary 

classes in model theory. 

Given a set E of positive bounded sentences, define 

ModA(E) = {E [E is a Banach space and E I=Ao " for all or E E}. 

Also, if E is a Banach space, define 

T h A ( E ) =  {o'1 cr is a positive bounded sentence and E ~Ao-}. 

THEOREM 1.20. For a class ~ of Banach spaces, the following conditions are 

equivalent: 

(i) ~ is a compact, local class; 

(ii) qr is closed under Banach space ultraproducts, is closed under isometry and 

satisfies 

for each Banach space E and each Banach space ultrapower E of E ; 

(iii) For some set "2, of positive bounded sentences, cr = ModA (E). 

PROOF. The discussion above shows that (ii) implies (i). Theorem 1.17, 

Corollary 1.11 and the fact that every Banach space ultrapower of E is a 

nonstandard hull of E, show that (iii) implies (ii). 

It remains to show that (i) implies (iii). Let ~ be a compact, local class and let 

Y = {tr Itr is a positive bounded sentence and E ~Atr for all E ~ c~}. 

It suffices to show that ModA (E)C_ qg. 

In order to prove this we need to introduce some technical machinery which is 

also useful in other contexts. Let o" be a positive bounded formula and m >_- 1. 

We introduce a new "approximant"  of o', to be denoted by o'7,, which is defined 

by induction on the logical complexity of or: 
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P(t)-.. is - - 1 0 ( ( 1 -  ( l / m ) ) - t )  

Q(t)7. is "-ne((l + (1/m )). t) 

( t = s ) 2 ,  is "-lO(m.(t-s)) 

(o" ^ r )m is {~:. ^ r ; .  

(~r v r ) , .  is crT. v r;,  

(3x)(Px^cO:. is (3x)(Px^~;.) 

(Vx)(Px--,~r)7~ is (Vx)(Px ~crT~). 

LEMMA 1.21. For each positive bounded formula ~ and each m >= 1: 

(i) -1 o-7. is logically equivalent to a positive bounded formula; 

(ii) Fro'2~--~o'L and Fro'++~---~7~. 

PROOF OF LEMMA 1.21. 

(i) This is immediate from the definition by an inductive argument. 

(ii) The sentences (Vx) (--n Ox ~ Px ) and (u  (--1Px ~ Ox ) are easily seen to 

be theorems of T, as are (Vx)(P(rx) - -*- -nO(sx) )  and (Vx)(O(sx)---~- 'nP(rx)) ,  

when 0 < s < r are rational numbers. This shows that (ii) holds whenever o" is an 

atomic formula. An inductive argument shows that (ii) holds in general. 

Now we complete the proof of Theorem 1.20. Let E be a Banach space in 

ModA (52). Fix o" E ThA (E)  and let m => 1. There must be an F in 17 such that o-~ 

holds in F. For otherwise, by Lemma 1.21, F~--no-~, for every F E  c~; in that 

case --n{rL is logically equivalent to a sentence in E, so that E~-n{r2~. But 

E ~ o-L+~, which is a contradiction by Lemma 1.21. 

Let 22o be a finite subset of Tha (E)  and m -> 1. Applying the argument above 

to the conjunction of E,,, we see that there exists F in ~' such that 

F ~ o - ~  for all o'E:~0. 

Since ~ is a compact class, there exists F in qg such that ThA ( E ) C  Tha (F). 

But Corollary 1.16 yields that E and F must be finitely equivalent. Since q~ is a 

local class, this shows that E is in c~, which completes the proof of Theorem 1.20. 

In dealing with specific classes of Banach spaces, condition (ii) in Theorem 

1.20 is often straightforward to check. It has been shown to hold for many 

important classes, such as the classes of Le-spaces (1 _-< p < ~), Ll-preduals; more 

generally for the 5f~,~+-spaces (1 =< p =< ~, A >_- 1) and many others. (See [10, for 

example and also [3], [12], [13] and [21].) For many of these classes rg an explicit 
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set of positive bounded sentences E satisfying ~ --- Moda (~) can be extracted 

from known results, especially those of Krivine, Dacunha-Castelle and Stern. 

If c~0 is an arbitrary class of Banach spaces it is easy to see that there must be a 

smallest compact, local class c~ which contains ~o. If we let 

E = {tr I~r is a positive bounded sentence and E ~A O" for all E E ~o} 

then c~ must equal Moda (E), by Theorem 1.20. The following result gives a 

different kind of characterization of ~. 

THEOREM 1.22. Let ~o be a class of Banach spaces and let ~ be the smallest 

compact, local class of Banach spaces which contains C~o. Then a Banach space E 

is in c~ if and only if some Banach space ultrapower of E is isometric to a Banach 

space ultraproduct of members of Cr 

PROOF. Since ~ is a compact, local class it satisfies condition (ii) of Theorem 

1.20. Therefore it contains E whenever a Banach space ultrapower of E is 

isometric to a Banach space ultraproduct of members of qgo C_ c~. 

Conversely, suppose E is in qg. That is, E ~ A ~  whenever o- is a positive 

bounded sentence such that F ~ a o- for every F E ~o. Arguing as in the proof of 

Theorem 1.20, there exists a Banach space ultraproduct of members of qgo, say F, 

which is finitely equivalent to E. By Theorem 1.13 these are Banach space 

ultrapowers/~, 1 ~" of E, F respectively such that /~ and P are isometric. Now a 6 is 

a Banach space ultrapower of a Banach space ultraproduct of members of Cr 

The proof is completed by showing that such an _~ must actually be a Banach 

space ultraproduct of members of ~o. This is straightforward to prove and we 

omit the details. (See [16, p. 54] for example.) 

We close this section by posing two questions which are suggested by the 

results presented here and which seem to involve aspects of both Banach space 

theory and model theory in important and interesting ways. 

(1) Let cr be the class of Banach spaces which are isometric to some Banach 

space C(X) ,  of all continuous, real-valued functions on a compact Hausdorff 

space X. It can be shown that ~0 is closed under Banach space ultraproducts (see 

Section 3.). Let qg be the smallest compact, local class which contains ~0. By 

Theorem 1.22, a Banach space E is in cr if and only if some ultrapower of E is in 

cs Equivalently, E is in cr if and only if there is a compact, Hausdorff space X 

such that E ~A C(X) .  

One open question is whether ~o is a proper subset of ~g. If so, as seems likely, 

then cr is a natural class of Banach spaces to investigate. For example, by [10, 

theor. 2.2] each member of ~ is an ~=. 1+-space, that is, a space whose dual space 
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is isometric to an L~-space. Yet, as will be shown in [7], not every such space is in 
fi. 

We remark that the same problem seems interesting when fio is the class of 

Banach spaces which can be given Banach lattice structure. 

(2) Let fio be the class of all finite dimensional Banach spaces, and fi the 

smallest compact, local class of Banach spaces which contains fio. From 

Theorem 1.22 we have: 

(i) E ~ fi if and only if some Banach space ultrapower of E is isometric to a 

Banach space ultraproduct of finite dimensional spaces. Or, in the language of 

[11], E is in fi if and only if some nonstandard hull of E is isometric to a 

hyperfinite dimensional nonstandard hull. In [5] it is shown that the sequence 

space l~ satisfies this condition, and in Section 2 below the same will be proved 

for lp (1 =< p < oo). Therefore all the spaces lp are in fi. 

Another  condition for membership in E is the following: 

(ii) E E fi if and only if for each positive bounded sentence or and each m => 1 

there is a finite dimensional space in which tr*,, is true. 

The problem we pose is to decide which spaces are in fi. It seems possible that 

every Banach space is in fig. The simplest spaces for which membership in fi is 

not settled are the space co of sequences converging to 0 and the space L1 of 

Lebesgue integrable functions on [0, 1]. 

Note that if E is in fi, then the question whether E has some given local 

property can be reduced directly to properties of finite dimensional spaces. 

Therefore this problem is related to the question whether local properties of 

Banach spaces can be reduced to facts about finite dimensional spaces. 

Section 2. Lp-spaces (1 = p < ~)  

Using the ideas of the previous section and some facts from analysis, it is 

possible to give a complete classification of the Lp-spaces (1 _-< p < oo) under ---A 

and to determine the structure of the nonstandard hulls of Lp-spaces. Before 

doing this, we summarize a few facts about Lp-spaces and give some notation. As 

usual we write Lp (/x) for the Banach space of p th  power absolutely integrable 

(real-valued) functions on some measure space (S, ~, p.). If /z is Lebesgue 

measure on [0, 1] we write L, in place of Lp 0z). If/x is a purely atomic measure, 

with/z({s}) = 1 for all s ~ S, then we write I, (S) for Lp (/x). In such a case, when 

S = N we just write lp for Ip (S); if S = { 1 , 2 , . . . ,  n}, then we just write le (n). In 

general we write the norm of x E L, (/z) as II x II. 
On each Lp-space there is a partial ordering =< induced by the pointwise 
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order ing  of functions,  under  which the space becomes  a Banach  lattice. 

E l emen t s  x, y of Lp (IX) are disjoint if inf (I x 1, I Y I ) = 0. If x, y are disjoint,  => 0 

and u = x + y, then they are called components of u. An atom of Lp (IX) is an 

e l emen t  u _--- 0 such that  II u II = 1 and the only c o m p o n e n t s  of u are 0 and u 

itself. The  closed l inear span of the set of a toms  is the purely atomic par t  of 

Lp (IX). This  closed subspace  of Lp (IX) is isometr ic  to lp (S), where  S is the set of 

a toms.  An e lement  x of Lp (IX) is purely nonatomic if I x ] has no purely a tomic  

c o m p o n e n t  (except 0). These  e lements  fo rm a closed subspace  of Lp (IX) which is 

i sometr ic  to a space Lp (/2). Moreover ,  each u in Lp (IX) can be wri t ten uniquely 

as u = x + y, where  x is purely atomic,  y is purely nona tomic  and x, y are 

disjoint.  Thus  Lp(ix)  is canonical ly isometr ic  to the direct sum of lp(S) and 

Lp (12); moreove r ,  this is an /p-sum in the sense that  

II u 11' -- II x I1' + II y I1' 

for  u = x + y as above.  

E l emen t s  x, y of Lp (IX) are disjoint if and only if 

II x + y II e = II x - y II ~ = 11 x II e + II y II e. 

T h e r e f o r e  the disjointness of e lements  is p rese rved  under  isometr ies  be tween  

Lp-spaces  (as Banach  spaces),  as is the cardinali ty of the set of a toms.  (See [14], 

for  example ,  for  a comple te  discussion of the Lp-spaces.)  

Now let Lp(IX) be a fixed Lp-space and let s  deno te  one  of its 

nons t anda rd  hulls. As above,  let rr denote  the quot ient  mapp ing  f rom the finite 

par t  of *Lp (IX) on to  /~p (IX). It was shown in [10] that /~p (IX) is an Lp-space.  

LEMMA 2.1. Let S be the set of atoms of Lp (Ix). Then rr (* S) is the set of atoms 

of  s  
In particular, the purely atomic part of I~p (IX) is isometric to lp (*S). 

PROOF. By the Trans fe r  Principle,  the elements of *S have norm 1 and are 

posi t ive in *Lp (IX). Moreove r ,  since distinct a toms are disjoint,  we have  

II x - y II p = II x II ~ + II y If p = 2 

wheneve r  x, y are distinct e lements  of *S. The re fo re  ~r maps  *S bijectively onto  

a set of posit ive e lements  of/~p (ix) which have  no rm 1. 

Suppose  x @ *S and 7r(x) = u + v in /.~p (IX), with u, v disjoint and ~ 0 .  We 

can choose  u', v ' @  *L e (IX) which are positive, disjoint and satisfy zr(u ')  = u and 

~ ' (v ' )  = v. Thus  u'+ v' is infinitely close to x in *Lp(IX). By splitting u '  and v '  

into purely a tomic  and nona tomic  parts  in *Lp (IX), we see that x must be 
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infinitely close to u'  or to v'. That is, either ~-(x)= u or 7r (x)= v. This shows 

that each ~r(x) is an atom in /~p (/~), when x ~ *S. 

If x E *Lp (tz) has norm 1, is positive and is not infinitely close to any element 

of *S, then we can find positive u', v' which are disjoint and not infinitesimal in 

*L2 (/z) such that x = u ' +  v'. Thus 7r(x) = 7r(u') + 7r(v') and so rr(x) is not an 

atom in /~ (/x). This completes the proof. 

It was shown in [10] that for a Banach space E with nonstandard hull /~: 

E is an Lp-space if and only if /~ is an L2-space. 

Therefore,  by Theorem 1.13, the L2-spaces are finitely equivalent only to other 

Lp-spaces. Moreover,  by this and Corollary 1.14 each L2-space is finitely 

equivalent to a separable Lp-space; the structure of these spaces is well 

understood. 

THEOREM 2.2. I f  Lp(tz, ) and L2(tx2 ) are infinite dimensional, then 
Le(tzO=-ALp(tX2 ) if and only if one of the following conditions holds: 

(1) Lp(/xl) and Lp(/z2 ) have no atoms; 

(2) Le(lx~ ) and Lp(/z2) have infinitely many atoms; 
(3) L2(/xl ) and Le(i.t2 ) have the same (finite) number of atoms. 

PROOF. Lemma 2.1 and the preceding discussion makes it clear that one of 

the conditions must hold if Lp (tzl) and L 2 (/z2) have isometric nonstandard hulls. 

Thus we have one direction of this result, by Theorem 1.13. 

To prove the converse, we may assume that Lp(/Zl) and Le(/z2 ) are both 

separable. In that case, if (1) or (3) holds then Lp(txl ) is isometric to Lp(/z2) and 

we are done. If (2) holds, then each L 2 (/z,) has purely atomic part isometric to l 2. 

Moreover,  if L2(/.t~ ) has a nontrivial purely non-atomic part, then that part is 

isometric to L e. It thus remains only to show that 12 is finitely equivalent to the 

/p-sum of l 2 and Lp. 
It is evident that the nonstandard hull [p has nontrivial purely atomic part. 

Indeed, any finite element of *l 2 which takes only infinitesimal values (as a 

function from *N into *R) determines a purely nonatomic element of [2. Thus we 

may find (by Corollary 1.14) a separable subspace E of/'p such that E contains lp 

and also some purely nonatomic elements of [2 and satisfies E ---,~ [2. But then E 

is a separable Lp-space finitely equivalent to lp and E must be isometric to the 

/2-sum of l 2 and L v. This completes the proof. 

COROLLARY 2.3. Any  two infinite dimensional L2-spaces have isomorphic 
nonstandard hulls. 
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PROOF. By Theorem 2.2, any infinite dimensional Lp-space is finitely equival- 

ent to a separable Lp-space which has nontrivial purely nonatomic part. Any 

such Lp-space is isomorphic to L, [14]. Thus, by Theorem 1.13, the given 

Lp-space has nonstandard hulls which are isomorphic to nonstandard hulls of Lp. 
In the remainder of this section we examine more closely the structure of the 

nonstandard hulls/', and Lp, as L~-spaces. The previous results show that if *At is 

chosen properly (for example if it has the n0-isomorphism property) then the 

nonstandard hulls of Lp-spaces are isometric to [, or /~ ,  on one of the /p-sums 

lp (n)G/-~p. Indeed, under these hypotheses, if S is any internal Banach space and 

is an Lp-space, then it must be isometric to one of these spaces, by Theorem 

1.15. 

In order to obtain a simple description of [p and L, it is convenient to make 

the following hypothesis about *At: 

( # ) There is a cardinal number K such that each infinite, internal subset of 

*N has (external) cardinality K. 

This condition holds, for example when *At is obtained via the ultrapower 

construction using a free ultrafilter on a countable set. In this case K = 2 "o. The 

condition also holds whenever *At has the N0-isomorphism property. Indeed, in 

this case all infinite, internal sets have the same (external) cardinality [5]. 

From now on in this section we suppose that *At is an extension of At which 

satisfies ( # ) and that At contains I, and L,. We first note that [, and/~,p have 

density character K and cardinality K. Indeed, let E be any separable, infinite 

dimensional Banach space in At. We may choose S to be a countable, dense 

subset of E and choose T to be a countably infinite subset of E whose elements 

all have norm 1 and are distance => 1/2 apart. Then each element of *E is 

infinitely close to an element of *S. Also, the elements of *T determine distinct 

elements o f /~  which all have norm 1 and are distance => 1/2 apart. Hence 

K = c a r d ( * T ) =  < dens i ty( /~)= < ca rd( /~)=  < c a r d ( * S ) =  K. 

Thus card ( /~)= density ( /~)= K. Also note that the purely atomic part of [, is 

isometric to /,(F), where F is a set of cardinality K (by Lemma 2.1.). The 

structure of [, and/S,  is completely determined in the following result. In it we 

use this notation: [0, 1]" denotes the measure algebra obtained from the product 

of K copies of Lebesgue measure; the /,-sum of an infinite family {E,~ lot ~ I} 

consists of all sequences {a~ l a E I} such that as E E~ for all a E I and 

E~EI II a~ lip < oo. The norm of such a sequence is (E ]1 a~ [[")~/P. 
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THEOREM 2.4. 

1) s is isometric to the lp-sum o[ K copies o[ Lp([0, 1]"). 

2) The purely nonatomic part o[ [p is isometric to l~p. 

PROOF. In each part of the proof we use the well known method for 

analyzing the structure of an abstract Lp-space, as described in [14, chap. 5] for 

example. This entails first taking a maximal set S of pairwise disjoint, positive 

elements of norm 1. (In (2) the elements of S should be purely nonatomic). Each 

u E S yields a finite measure ~,, with p.u-measurable sets corresponding to 

components of u. Then the abstract Lp-space being analyzed is isometric to the 

/p-sum of the spaces Lp(/Z.), indexed over u C S. It thus suffices in each case to 

show: 

(a) there is a family S of pairwise disjoint, purely nonatomic, positive 

elements of norm 1 which has cardinality K, and 

(b) each space Lp(p.,) is isometric to Lp([0, 1]K). Moreover,  to prove (b) it 

suffices, by Maharam's Theorem [14], to show: 

(b') for each positive, purely nonatomic element u, there is a set A of 

components of u and ~5 > 0 such that [Ix - y ]]_-> 6 if x ,y  ~ A are distinct, and 

card (A)  = K. 

We will prove (a) and (h') for the cases (1) and (2) separately, as the details are 

somewhat different. 

(1) In Lp there is a countably infinite set S of pairwise disjoint, positive 

elements of norm 1. Then *S determines a set of K pairwise disjoint, positive 

elements of/~p, each of norm 1. This proves (a). To prove (b') let u = 7r(x) be any 

positive element of /~p; we may assume x has norm 1 in *Lp. By using the 

Transfer Principle and properties of Lp, there is an internal set A of components 

of x in *Lp such that if a,b E A are distinct, then [ [ a -  b ll= > 6 where 

6 = (1/2) TM. Moreover, A can be taken to be (internally) of the same cardinality 

as *N. Then the set {Tr(a)l a C A }  is a set of K components of 7r(x)= u, with 

distinct elements being distance ->_ 6 apart. This proves (b') for Lp and completes 

the proof of (1). 

(2) As outlined above, we show that the purely nonatomic part of [p is also 

isometric to the/p-SUm of K copies of Lp ([0, l ] " ) .  It is an easy matter to produce a 

set of K pairwise disjoint, purely nonatomic, positive elements of [p. (Note that 

an element of *lp yields a purely nonatomic element of/'p if, as a function from 

*N into *R, its values are all infinitesimal.) For example, let to be a fixed infinite 

integer and let I be any internal subset of *N which has to elements. Define x in 

*lp by 
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x ( n ) =  ~'0 if n E * N - I  
[(1/to) 1/p if n E I " 

Then  7r(x) in [p is a purely nonatomic,  positive e lement  of norm 1. Clearly we 

can p roduce  a family of pairwise disjoint sets L as above,  which is indexed over  

*N. Thus  we get the desired positive e lements  of *N. Now we prove (b') for the 

purely nonatomic  e lements  of [p. Let  x be any e lement  of *lp which is positive, of 

norm 1 and determines  a purely nonatomic  e lement  7r(x) of [p; that is, for  each 

n E *N, x(n) is infinitesimal. If k is a s tandard integer  => 1, then we can parti t ion 

*N into k sets A , , . . . , A ~  such that for  each 1 =<] =< k, the sum 

I x ( n ) l  p 
nEAj 

is infinitely close to 1/k. It follows that there  exist an infinite integer  to, an 

infinitesimal 7/ > 0  and an internally indexed part i t ion { A j l l  _-<j < 2 '~ of *N 

such that for  each ] 

ixCn)lp_  <_n 

Now we may find an internally indexed family BI, B 2 , " ' , B .  of subsets of 

{ 1 , 2 , . . . , 2  "} such that each B,  has 2 ̀ 0-' elements,  as does each symmetr ic  

difference BIABj if i~j. For  each 1 _-<j-< to we define yj on *N by 

J x(n) if n E A i  and i EBi ,  some i 

yj(n)  = 

l 0 otherwise.  

It is an easy computa t ion  to show that in */p, if i ~  j, then II y, - yJ IIp is infinitely 

close to 1/2. Thus  {Tr(yj)ll_-<j -< to} is a set of components  of r r (x)  whose 

distance apart  is uniformly (1/2) 1/p. By the assumption ( # ) this set of compo-  

nents  has cardinali ty K. This completes  the proof.  

For  each to E *N, let [p(to) deno te  the subspace of/'~ which is de te rmined  by 

sequences  x in *lp which satisfy 

x ( n ) = O  if t o ~ n .  

Then  [~(to) is easily seen to be an abstract L~-space; moreover ,  if to is infinite, 

then an analysis similar to that given above  for [~ shows that: 

(i) the purely atomic part of fp(to) is isometric to /p(F), where F has 

cardinali ty s: ; 
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(ii) the purely nonatomic part of [p (to) is isometric to the/p-sum of K copies of 

Lp([0, 1]'). 

Therefore,  [p is isometric to [p(to) for any infinite to @ *N. 

THEOREM 2.5. For any positive bounded sentence o-, lp ~Ao- if and only if 

for each m > 1 there exists N = N ( m )  such 

that Ip(n)~o-+,, for all n >= N. 

PROOF. Fix o-. By the argument above, lp ~Ao- if and only if [p(to)~Ao- for 

every infinite w ~ *N. By Theorem 1.9 this holds if and only if for each m => 1, 

*lp(to)~o-+~ for all infinite to E *N. 

This yields the desired result by a familiar argument in nonstandard analysis. 

We will prove the p = 00 version of Theorem 2.5 in Section 3. It would be very 

interesting to know if there is any corresponding result possible for Lp. This is 

closely related to the question (2) raised at the end of Section 1, as the proof of 

Theorem 2.5 suggests. 

We close this section by noting that the methods used in proving Theorem 2.4 

can also be used to analyze the structure of the measure spaces introduced by P. 

Loeb in [15]. To take an important case, let A be an infinite but *-finite set and 

let A be an internal, positive function from A into *R such that each value A(a) 

is infinitesimal and Za~A A (a)  is infinitely close to 1. For each internal set B C A, 

/z(B) is defined to be the standard part of the sum Eo~B A(a). Loeb showed [15] 

that/x extends uniquely to a o--additive probability measure (also denoted by /z )  

on the o--algebra of subsets of A generated by the internal subsets. Arguing as 

above, it can be shown that the measure algebra of the finite measure /z is 

homogeneous, and thus by Maharam's Theorem it is isomorphic to the measure 

algebra of [0, 1] K. In particular, for each p the Banach space Lp(/z ) is isometric to 

Lp([O, 1]~). 

Section 3. C(X) spaces 

Let C ( X )  be the Banach space of all continuous, real-valued functions on X, a 

compact, Hausdorff space. Let M be a set-theoretical structure which contains X 

and C ( X )  and let *M be an extension of M ; as usual, *M is Nl-saturated over M. 

We will show first that the nonstandard hull of C ( X )  is itself a space of 

continuous functions on a compact Hausdorff space 3~, and we will give a useful 

description of this space. Each element p of * C ( X )  is an internal function from 
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*X to *R. Since C(X) is given the supremum norm, p is a finite element of 

*C(X) exactly when each value of p is finite in *R. Therefore,  we may define 

Op: *X---~ R by letting ~ be the standard part of p(x), for each x E *X. Let 

the space of all such functions be denoted by C(X).  It is a routine exercise to 

prove the following result. 

PROPOSITION 3.1. (?(X) is a Banach space when equipped with the supremum 
norm. Moreover, (?(X) is isometric to the nonstandard hull of C(X), under the 
function which maps ~ in (?(X) to ~r(p) in the nonstandard hull. 

We also note that for any finite p and q in *C(X) 

O(p .q )=  Op.Oq 

~ (p, q)) = max (Op, Oq) 

~ (p, q)) = min (Op, Oq). 

Therefore  t~(X) is closed under pointwise multiplication and under the point- 

wise lattice operations. Thus the general theory of continuous function spaces [4] 

shows that there is a compact, Hausdorff space .~ such that ~?(X) is isometric to 

C(X)  in a multiplication and lattice preserving way. Indeed, we can identify 

as the completion of *X under the ~?(X) uniform structure; that is, under the 

uniform structure given by the pseudometrics 

d:(x,y)= Ifx - [ Y l  

on *X, where [ ranges over (~(X). 

Let r be the given topology on X. We will refer to the elements of *z as the 

internal open subsets of *X. These sets form the base for an important topology 

on *X called the Q-topology. We now show that it is this topology which is 

induced on *X as a subspace of X. This is the same as showing that the topology 

on *X induced by the t~(X) uniformity is the Q-topology. Suppose first that 

x E *X, f E C(X) and 6 > 0 is a standard real number. Then [ = ~ for some p in 

*C(X). The set S = { y E * X  I I fY - fX l  < 8 }  contains { y E * X  I I p y - p x l  < 
8/2} which is an internal open set. Thus S is a neighborhood of x in the 

Q-topology. This shows that each [ in C'(X) is continuous relative to the 

Q-topology. Next, suppose S is any neighborhood of x for the Q-topology. 

There must be an internal open set 6 such that x E (7 C_ S. By transferring 

Urysohn's Lemma to *Jl, f, we see that there must be p ~ *C(X) which takes its 

values in *[0, 1], has value 0 at x and has value 1 on *X - ~7. Letting [ = ~ we 

have 
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x E{y ~ * X J  I f Y - f x [ <  1/2}C ~7. 

Therefore, each open set in the Q-topology is open relative to the C(X)- 

uniformity. We have proved: 

PROPOSITION 3.2. There is a compact, Hausdorff space f( which contains *X 
as a dense subset and such that: 

(1) the subspace topology on *X is the Q-topology; 
(2) each function in C(X)  extends to a real-valued continuous function on f(  ; 
(3) the restrictions of each real-valued continuous function on f(  is in C(X). 

Evidently the correspondence between C()()  and t~(X) described in Proposi- 

tion 3.2 is an isometry of Banach spaces and preserves the pointwise multiplica- 

tion and lattice operations. This result and Proposition 3.1 shows that C(,~) may 

be canonically regarded as identical to the nonstandard hull of C(X). Consider 

the statement C(X)  -= a C(Y), where X and Y are compact, Hausdorff spaces. 

By Theorem 1.13, this statement holds if and only if *.J,/ can be chosen so that 

C(X) and C(Y)  have isometric nonstandard hulls. This is the same as saying 

that C()()  and C(12) are isometric, and this is equivalent to saying that ) f  is 

homeomorphic to I~. 

If X is a compact, Hausdorff space, let ~ ( X )  be the Boolean algebra of 

subsets of X which are closed and open (clopen). Next we analyze the algebra 

()~) of clopen subsets of ,~. 

PROPOSITION 3.3. A subset of X is in ~ (.~) if and only if it is the closure of an 
element of *~(X) .  

PROOF. F i r s t l e tA b e a n e l e m e n t o f * ~ ( X ) . T h a t i s ,  b o t h A  a n d * X - A  are 

internal open sets. The characteristic function p of A 

p ( x ) = l l  if x E A  

t 0 if x E * X - A  

is in *C(X) and so f = Op is in t~(X). Also let f denote the continuous extension 

of ~ to .~. Since *X is dense in .,~', f takes on just the values 0 and 1 on X. Thus 

S = {x E f ( I f ( x )  = 1} is in ~ ()~). Moreover, S is the closure of A in ,~. 

Next suppose S is in ~ ()(). Then the characteristic function f of S is ifi C(.X). 

By Proposition 3.2 there is p E *C(X) so that on *X, f equals ~ Therefore, if 

x E ' X ,  then p(x) is infinitely close to 0 or to I. It follows that A = 
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{ x E * X [ f ( x ) = O }  is also equal to { x E * X l p ( x ) < l / 3 }  and * X - A =  
{x E*XIp(x )>2 /3} .  Therefore  A and * X -  A are internal open sets, so A is 

an element of *~  (X). Moreover  S must be the closure of A, by the definition of 

A and the fact that *X is dense in .~. This completes the proof. 

COROLLARY 3.4. Let X and Y be compact, Hausdorff spaces and suppose 
C(X)--~A C(Y).  If X is connected, then so is Y. 

PROOF. If C(X)=-A C(Y),  then as discussed above, *M can be chosen so that 

)~ and l;" are homeomorphic.  If X is connected, then ~ ( X )  has just two 

elements. Thus *~  (X) has two elements also. By Proposition 3.3 it follows that 

~ ( X )  has two elements. Hence the same is true of ~(12), * ~ ( Y )  and ~ ( Y ) .  

Thus Y is also connected. 

It is clear that many similar results can be proved by this kind of argument. 

One which involves an additional idea is the following: 

PROPOSITION 3.5. Let X and Y be compact, Hausdorff spaces and suppose 
C(X)-~A C(Y).  If  X is totally disconnected, then so is Y. 

PROOF. Following the pattern of the previous proof, it suffices to show that 

for any compact, Hausdorff space X, X is totally disconnected if and only if .~ is 

totally disconnected. 

First suppose )~ is totally disconnected and let x ~ y be in X. Then there is a 

clopen subset S of .~ so that *x E S and * y ~  S. By Proposition 3.3 there is a set 

A C_*X such that A a n d * X -  A are internal open sets, *x E A and*y~E A. By 

transferring the existence of such a set back to M, we see that there is a clopen 

set G C_ X such that x ~ t~ and y ~ •. Since x and y were arbitrary and since X is 

compact, it follows that X is totally disconnected. 

Conversely, suppose that X is totally disconnected and x, y are distinct 

elements of X. There is a function f in C(X') such that f (x)  = 0 and f (y )  = 1. For 

some finite element p in *C(X),  f equals ~ on *X, by Proposition 3.2. Consider 

the two disjoint internal closed sets {z E *Xlp(z)<= 1/3} and {z E * X I p ( z  )>- 

2/3}. Since X is totally disconnected (and using the Transfer Principle) there is an 

A C_*X such that A and * X - A  are internal open sets and A _D 

{z E *Xlp(z)<- 1/3} and *X ~ A D_ {z E *XIp( z  )>-_ 2/3}. Let S be the closure 

of A in .~. By Proposition 3.3, S is a clopen set. Moreover,  since *X is dense in 

,~ we see that f (x)  = 0 implies that x is in S, and f (y )  -- 1 implies that y is not in 

S. That is, any pair of distinct points in )~ can be separated by a clopen set. Since 

.~ is compact, this shows that .~ is totally disconnected, completing the proof. 
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THEOREM 3.6. Let X, Y be compact, Hausdorff spaces and suppose that X is 

totally disconnected. Then C(X)=-A C(Y)  if and only if 
(1) Y is totally disconnected, and 
(2) the Boolean algebras ~(X) ,  ~ ( Y )  are elementarily equivalent. 

PROOF. Suppose first C(X)-~A C(Y).  By Proposition 3.5, Y must be totally 

disconnected. By Theorem 1.13, *~  can be chosen so that the nonstandard hulls 

of C(X)  and C(Y)  are isometric. By Proposition 3.1 and 3.2 this implies that .~ 

and 17 are homeomorphic. Hence *~ (X)  and * ~ ( Y )  are isomorphic, by 

Proposition 3.3. But ~ ( X )  is elementarily equivalent to *~ (X)  and ~ ( Y )  to 

*~(Y);  hence ~ ( X )  and ~ ( Y )  are elementarily equivalent to each other. 

Conversely, suppose ~ (X), ~ (Y) are elementarily equivalent. Choose ~t to 

include X, Y, C(X)  and C(Y)  and let *~  be an extension of ~ which has the 

N0-isomorphism property [5]. Then *~ (X) is isomorphic to *~ (Y). Since X and 

Y are assumed to be totally disconnected, the same is true of ,~ and I 7, by 

Proposition 3.5. By Proposition 3.3 the algebras ~(..Y) and ~(17) are isomor- 

phic, which implies that X and 17 are homeomorphic, by the duality theory for 
Boolean algebras. Therefore, by Propositions 3.1 and 3.2, C(X) and C(Y)  have 

isometric nonstandard hulls. This proves C(X)=-A C(Y)  by Theorem 1.13. 

COROLLARY 3.7. Let X be any infinite, compact, Hausdorff space. 

(1) C(X) =-A l~ if and only if X is totally disconnected and has a dense subset of 
isolated points. 

(2) Let A be the Cantor set. C(X)=--AC(A) if and only if X is totally 
disconnected and has no isolated points. 

PROOF. 

1) l~ is C(flN), where f in  is the Stone-Cech compactification of the countable 
discrete space N. The Boolean algebra ~(/3N) is the power set of N, an infinite, 

atomic Boolean algebra. Any two such algebras are elementarily equivalent [1]. 
Therefore, by Theorem 3.6, C(X)=-A l~ if and only if X is totally disconnected 

and ~ (X) is infinite and atomic. This is the same as saying that X is infinite and 
has a dense set of isolated points. 

2) ~(A) is an atomless Boolean algebra, and any two such algebras are 

elementarily equivalent [1]. A totally disconnected space X has an atomless 

algebra ~ (X) if and only if X has no isolated points. 

REMARKS. 

(1) A complete classification of the elementary equivalence classes of Boolean 

algebras was given by Tarski [25]. (See also [1].) There are only N0 such classes. 
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(2) The results of this section can all be easily extended to include the 

multiplication on C(X). See [8] for some discussion of full elementary equival- 

ence of C(X)  spaces. 

Next we complete the analysis of the theory of lp spaces begun in Theorem 2.5 

by considering the case p = ~. For n E N, l| is the n-dimensional sequence 

space, under the supremum norm. 

THEOREM 3.8. For any positive bounded sentence o', l| ~a or if and only if for 

each m >= 1 there exists N = N(m)  such that l~(n)~cr~ for all n >= N. 

PROOF. Choose M to contain l| and let *M be an extension of M which has 

the N0-isomorphism property. It was shown in [5, p. 730] that in this setting, L is 

isometric to L(to) for each infinite to E*N.  Now argue as in the proof of 

Theorem 2.5. 

Next we prove a result, for C(X)  spaces, of L6wenheim-Skolem type. 

(Compare Corollary 1.14 above and also see [8, theor. 9.3].) 

THEOREM 3.9. Let X be a compact, Hausdorff space and K an infinite cardinal 

number. For each set S C C(X)  of cardinality <= K there is a closed subspace F of 

C(X)  and a compact, Hausdorff space Y such that S C F, F has density character 

<= K, F=-A C(X)  and F is isometric to C(Y).  

PROOF. We argue as in the proof of Corollary 1.14, but using an expanded 

first-order language which contains a relation symbol corresponding to the 

partial ordering <= on C(X). Relative to this language, take an elementary 

substructure M of C(X)  which contains S, contains the constant function 1 and 

has cardinality - K .  In particular, M is necessarily a sublattice of C(X). As 

before, let F be the closure of M in C(X). The only new fact to be proved about 

F is that it is isometric to C(Y)  for some compact, HausdorlT space Y. But this 

follows from the fact that F is a closed sublattice of C(X)  which contains the 

constant function 1 [14]. 

COROLLARY 3.10. For each infinite, compact Hausdorff space X there is an 

uncountable compact metric space Y such that 

c(x)-~ c(Y). 

PROOF. Every Banach space is finitely represented in C(X). Therefore,  by 

[11, theor. 2.3] the nonstandard hull C(J~) of C(X)  contains a subspace 

isometric to C(0, 1). Let S be a countable dense subset of this subspace and 

apply Theorem 3.9 to C(,~), taking K = ~to. This yields a compact, Hausdorft 
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space  Y such tha t  

C(0 ,  1) and  

C ( Y )  is s e p a r a b l e ,  C ( Y )  c o n t a i n s  a s u b s p a c e  i s o m e t r i c  to  

c(y)~, c(R)~.c(x). 

B u t  then  Y is a m e t r i c  space ,  s ince  C ( Y )  is s e p a r a b l e ,  a n d  Y is u n c o u n t a b l e ,  

s ince  C ( Y )  c o n t a i n s  C(0 ,  1). T h e r e f o r e  Y is t h e  d e s i r e d  space .  

M i l u t i n ' s  T h e o r e m  asser t s  tha t  if X,  Y a re  u n c o u n t a b l e ,  c o m p a c t  m e t r i c  

spaces ,  t h e n  C ( X )  is i s o m o r p h i c  to  C ( Y )  [14]. F r o m  this  a n d  C o r o l l a r y  3.10 the  

f o l l o w i n g  resu l t  is i m m e d i a t e ,  us ing  T h e o r e m  1.13. (See  a lso  C o r o l l a r y  2.3, wh ich  

is t he  a n a l o g o u s  resu l t  fo r  Lp-spaces . )  

COROLLARY 3.11. A n y  two infinite d i men s i ona l  C ( X )  spaces have  isomorphic  

nons tandard  hulls. 
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